The Clifford Authentication Scheme was introduced in the paper Interactive Proofs For Quantum Computations by Aharanov et al..
Outline
The Clifford code encodes a -qubit message by appending an auxiliary register with qubits in . It then applies a random Clifford operator on all qubits. By measuring only the auxiliary register, the authenticator decides, whether to accept the received state or whether to abort.
Notations
- : suppliant (sender)
- : authenticator (prover)
- : -qubit state to be transmitted
- : security parameter defining the number of qubits in the auxiliary register
- : total number of qubits used
- : set of Clifford operations on qubits labelled by key
Properties
- The Clifford code is quantum authentication scheme with security
Protocol Description
- Encoding:
- appends an auxiliary register of qubits in state to the quantum message , which results in .
- then applies for a uniformly random on the total state.
- sends the result to .
- Decoding: Mathematically, the decoding process is described by
In the above, is the trace over the auxiliary register only, and is the trace over the quantum message system and the auxiliary system. Furthermore, and are projective measurement operators.
- applies the inverse Clifford to the received state, which is denoted by .
- measures the auxiliary register in the computational basis.
a. If all auxiliary qubits are 0, the state is accepted and an additional flag qubit in state is appended.
b. Otherwise, the remaining system is traced out and replaced with a fixed -qubit state and an additional flag qubit in state is appended.
References
- Aharanov et al. (2008).
- Broadbent and Wainewright (2016).
contributed by Shraddha Singh and Isabel Nha Minh Le