Authentication of Quantum Messages
Functionality
Imagine a person sends some quantum information to another pereson over an insecure channel, where a dishonest party has access to the channel. How can it be guaranteed that in the end the receiver has the same quantum information and not something modified or replaced by the dishonest party? Authentication of quantum channels/quantum states/quantum messages provides this guarantee to the users of a quantum communication line/ channel. The sender is called the suppliant (prover) and the receiver is called the authenticator.
Note that, it is different from the functionality of digital signatures, a multi-party (more than two) protocol, which comes with additional properties (non-repudiation, unforgeability and transferability). Authenticating quantum states is possible, but signing quantum states is impossible, as concluded in (1).
Also, unlike classical message authentication, quantum message authentication requires encryption. However, classical messages can be publicly readable (not encrypted) and yet authenticated.
Tags: Two Party Protocol, Quantum Digital Signature, Quantum Functionality, Specific Task, Building Block
Use Case
- No classical analogue
Protocols
Non-interactive Protocols:
- Purity Testing based Quantum Authentication
- Polynomial Code based Quantum Authentication
- Clifford Code for Quantum Authentication
Interactive Protocols:
- tbd
Properties
- Any scheme, which authenticates quantum messages must also encrypt them (1).
- Definition: Quantum Authentication Scheme (QAS)
A quantum authentication scheme (QAS) consists of a suppliant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{S}} , an authenticator and a set of classical keys . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{S}} and are each polynomial time quantum algorithms. The following is fullfilled:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{S}} takes as input an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} -qubit message system and a key and outputs a transmitted system of qubits.
- takes as input the (possibly altered) transmitted system and a classical key and outputs two systems: a -qubit message state , and a single qubit which indicates acceptance or rejection. The classical basis states of are called by convention.
For any fixed key , we denote the corresponding super-operators by and .
- Definition: Security of a QAS
For non-interactive protocols, a QAS is secure with error if it is complete for all states and has a soundness error for all states . The latter is the case (for a specific state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} ) if:
- Completeness: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall k\in K: A_k(S_k(|\psi\rangle \langle\psi|)=|\psi\rangle \langle\psi| \otimes |\mathrm{ACC}\rangle \langle \mathrm{ACC}|}
This means if no adversary has acted on the encoded quantum message Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} , the quantum information received by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}} is the same initially sent by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{S}} and the single qubit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is in state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathrm{ACC}\rangle \langle \mathrm{ACC}|} . To this end, we assume that the channel between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{S}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}} is noiseless if no adversary intervention appeared. - Soundness: For all super-operators Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}}
, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_\text{auth}}
be the state output by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}}
when the adversary’s intervention is characterized by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}}
, that is: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_\text{auth}=\mathbf{E}_k\left[ \mathcal{A}_k\left( \mathcal{O}(\mathcal{S}(|\psi\rangle \langle\psi |)) \right) \right] = \frac{1}{|K|}\sum_k \mathcal{A}_k\left( \mathcal{O}(\mathcal{S}_k(|\psi\rangle \langle\psi |)) \right).}
Here, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{E}_k} means the expectation when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} is chosen uniformly at random from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K.} The QAS then has a soundness error Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Tr}\left( P_1^{|\psi\rangle}\rho_\text{auth} \right)\geq 1-\epsilon,}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1^{|\psi\rangle}} is the projector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1^{|\psi\rangle} = |\psi\rangle \langle\psi | \otimes I_V + I_M \otimes |\mathrm{REJ}\rangle \langle \mathrm{REJ}| - |\psi\rangle \langle \psi| \otimes |\mathrm{REJ}\rangle \langle \mathrm{REJ}|.}
Further Information
- Barnum et al (2002) First protocol on authentication of quantum messages. It is also used later for verification of quantum computation in Interactive Proofs for Quantum Computation. Protocol file for this article is given as the Polynomial Code based Quantum Authentication