Trap Code for Quantum Authentication

From Quantum Protocol Zoo
Revision as of 12:42, 22 December 2021 by 91.35.144.136 (talk)
Jump to navigation Jump to search

Notation

  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho } : 1-qubit input state


Protocol Description

  • Encoding:
  1. Input: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} , pair of keys
  2. Apply an error correction code (corrects up to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle t} errors, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle d=2t+1} )
  3. Append an additional trap register of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle n} qubits in state Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |0\rangle \langle 0|^{\otimes n}}
  4. Append a second additional trap register of qubits in state Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |+\rangle \langle +|^{\otimes n}}
  5. Permute the total Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3n} -qubit register by Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \pi _{k_{1}}} according to the key Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k_{1}}
  6. Apply a Pauli encryption Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{k_{2}}} according to key Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k_{2}}
  • Decoding:
  1. Input: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho ^{\prime }} (state after encoding), pair of keys
  2. Apply according to key Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k_{2}}
  3. Apply inverse permutation Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \pi _{k_{1}}^{\dagger }} according to the key Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k_{1}}
  4. Measure the last Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle n} qubits in the Hadamard basis
  5. Measure the second last Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle n} qubits in the computational basis
    a. If the two measurements result in Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |+\rangle \langle +|} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |0\rangle \langle 0|} , an additional flag qubit in state is appended and the quantum message is decoded according to the error correction code
    b. Otherwise, an additional flag qubit in state is appended and the (disturbed) encoded quantum message is replaced by a fixed state


References

  1. Broadbent et al. (2012)
  2. Broadbent and Wainewright (2016).
contributed by Shraddha Singh and Isabel Nha Minh Le