Prepare-and-Measure Certified Deletion: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
<!-- Intro: brief description of the protocol --> | <!-- Intro: brief description of the protocol --> | ||
This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. | This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. This scheme is limited to the single-use, private-key setting. | ||
<!--Tags: related pages or category --> | <!--Tags: related pages or category --> | ||
== | ==Requirements== | ||
* '''Network Stage: ''' [[:Category:Prepare and Measure Network Stage| Prepare and Measure]] | |||
==Outline== | ==Outline== | ||
| Line 43: | Line 43: | ||
<!-- Add this part if the protocol is already in the graph --> | <!-- Add this part if the protocol is already in the graph --> | ||
<!-- {{graph}} --> | <!-- {{graph}} --> | ||
==Protocol Description== | ==Protocol Description== | ||
| Line 110: | Line 107: | ||
<!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. --> | <!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. --> | ||
== | ==Properties== | ||
<!-- | <!-- important information on the protocol: parameters (threshold values), security claim, success probability... --> | ||
This scheme has the following properties: | |||
*'''Correctness''': The scheme includes syndrome and correction functions and is thus robust against a certain amount of noise, i.e. below a certain noise threshold, the decryption circuit outputs the original message with high probability. | |||
*'''Ciphertext Indistinguishability''': This notion implies that an adversary, given a ciphertext, cannot discern whether the original plaintext was a known message or a dummy plaintext <math>0^n</math> | |||
*'''Certified Deletion Security''': After producing a valid deletion certificate, the adversary cannot obtain the original message, even if the key is leaked (after deletion). | |||
==References== | |||
* The scheme along with its formal security definitions and their proofs can be found in [https://arxiv.org/abs/1910.03551 Broadbent & Islam (2019)] | |||
= | <div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div> | ||
Revision as of 19:21, 5 February 2022
This example protocol implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. This scheme is limited to the single-use, private-key setting.
Requirements
- Network Stage: Prepare and Measure
Outline
The scheme consists of 5 circuits-
- Key: This circuit generates the key used in later stages
- Enc: This circuit encrypts the message using the key
- Dec: This circuit decrypts the ciphertext using the key and generates an error flag bit
- Del: This circuit deletes the ciphertext state and generates a deletion certificate
- Ver: This circuit verifies the validity of the deletion certificate using the key
Notation
- For any string and set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{I} \subseteq [n], x|_\mathcal{I}} denotes the string Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} restricted to the bits indexed by
- For
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{Q} := \mathbb{C}^2} denotes the state space of a single qubit,
- denotes the set of density operators on a Hilbert space
- : Security parameter
- : Length, in bits, of the message
- : Total number of qubits sent from encrypting party to decrypting party
- : Length, in bits, of the string used for verification of deletion
- : Length, in bits, of the string used for extracting randomness
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \tau =\tau (\lambda )} : Length, in bits, of error correction hash
- : Length, in bits, of error syndrome
- : Basis in which the encrypting party prepare her quantum state
- : Threshold error rate for the verification test
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Theta } : Set of possible bases from which \theta is chosen
- : Universal family of hash functions used in the privacy amplification scheme
- : Universal family of hash functions used in the error correction scheme
- : Hash function used in the privacy amplification scheme
- : Hash function used in the error correction scheme
- : Function that computes the error syndrome
- : Function that computes the corrected string
Protocol Description
Circuit 1: Key
The key generation circuit
Input : None
Output: A key state
- Sample
- Sample where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\tilde {\mathcal {I}}}=\{i\in [m]|\theta _{i}=1\}}
- Sample Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u\gets \{0,1\}^{n}}
- Sample Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle d\gets \{0,1\}^{\mu }}
- Sample
- Sample Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle H_{pa}\gets {\mathfrak {H}}_{pa}}
- Sample Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle H_{ec}\gets {\mathfrak {H}}_{ec}}
- Output Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho =|r|_{\tilde {\mathcal {I}}},\theta ,u,d,e,H_{pa},H_{ec}\rangle \langle r|_{\tilde {\mathcal {I}}},\theta ,u,d,e,H_{pa},H_{ec}|}
Circuit 2: Enc
The encryption circuit
Input : A plaintext state Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |\mathrm {msg} \rangle \langle \mathrm {msg} |} and a key state
Output: A ciphertext state Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho \in {\mathcal {D}}({\mathcal {Q}}(m+n+\tau +\mu ))}
- Sample Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle r|_{\mathcal {I}}\gets \{0,1\}^{s}} where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\mathcal {I}}=\{i\in [m]|\theta _{i}=0\}}
- Compute Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=H_{pa}(r|_{\mathcal {I}})} where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\mathcal {I}}=\{i\in [m]|\theta _{i}=0\}}
- Compute
- Compute
- Output Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho =|r^{\theta }\rangle \langle r^{\theta }|\otimes |\mathrm {msg} \oplus x\oplus u,p,q\rangle \langle \mathrm {msg} \oplus x\oplus u,p,q|}
Circuit 3: Dec
The decryption circuit
Input : A key state and a ciphertext
Output: A plaintext state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma \in \mathcal{D}(\mathcal{Q}(n))} and an error flag Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma \in \mathcal{D}(\mathcal{Q})}
- Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^\prime = \mathrm{H}^\theta \rho \mathrm{H}^\theta}
- Measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^\prime} in the computational basis. Call the result Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}
- Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^\prime = \mathrm{corr}(r|_\mathcal{I},q\oplus e)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{I} = \{i \in [m]|\theta_i =0\}}
- Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^\prime = H_{ec}(r^\prime) \oplus d }
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \neq p^\prime} , then set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = |0\rangle\langle 0|} . Else, set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = |1\rangle\langle 1|}
- Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^\prime = H_{pa}(r^\prime)}
- Output Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \otimes \gamma = |c\oplus x^\prime \oplus u \rangle \langle c\oplus x^\prime \oplus u| \otimes \gamma }
Circuit 4: Del
The deletion circuit
Input : A ciphertext Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \otimes |c,p,q\rangle\langle c,p,q| \in \mathcal{D}(\mathcal{Q}(m+n+\mu+\tau))}
Output: A certificate string Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma \in \mathcal{D}(\mathcal{Q}(m))}
- Measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} in the Hadamard basis. Call the output y.
- Output Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma = |y\rangle\langle y|}
Circuit 5: Ver
The verification circuit
Input : A key state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle | r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}} and a certificate string Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |y\rangle\langle y| \in \mathcal{D}(\mathcal{Q}(m))}
Output: A bit
- Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat y^\prime = \hat y|_\mathcal{\tilde{I}}} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{\tilde{I}} = \{i \in [m] | \theta_i = 1 \}}
- Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = r|_\tilde{\mathcal{I}}}
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega(q\oplus \hat y^\prime) < k\delta} , output Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} . Else, output Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} .
Properties
This scheme has the following properties:
- Correctness: The scheme includes syndrome and correction functions and is thus robust against a certain amount of noise, i.e. below a certain noise threshold, the decryption circuit outputs the original message with high probability.
- Ciphertext Indistinguishability: This notion implies that an adversary, given a ciphertext, cannot discern whether the original plaintext was a known message or a dummy plaintext Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0^n}
- Certified Deletion Security: After producing a valid deletion certificate, the adversary cannot obtain the original message, even if the key is leaked (after deletion).
References
- The scheme along with its formal security definitions and their proofs can be found in Broadbent & Islam (2019)