BB84 Quantum Key Distribution: Difference between revisions
Line 4: | Line 4: | ||
'''Tags:''' [[:Category:Two Party Protocols|Two Party]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]],[[Quantum Key Distribution]], [[Device Independent Quantum Key Distribution|Device Independent QKD]], [[Category:Multi Party Protocols]] [[Category:Quantum Enhanced Classical Functionality]][[Category:Specific Task]][[Category:Prepare and Measure Network Stage]] | '''Tags:''' [[:Category:Two Party Protocols|Two Party]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]],[[Quantum Key Distribution]], [[Device Independent Quantum Key Distribution|Device Independent QKD]], [[Category:Multi Party Protocols]] [[Category:Quantum Enhanced Classical Functionality]][[Category:Specific Task]][[Category:Prepare and Measure Network Stage]] | ||
==Assumptions== | ==Assumptions== | ||
* We assume the existence of an authenticated public classical channel between | * We assume the existence of an authenticated public classical channel between Alice and Bob. | ||
* We assume synchronous | * We assume that the network is synchronous. | ||
* Adversarial model: [[coherent attacks]] | * Adversarial model: [[coherent attacks]]. | ||
==Outline== | ==Outline== |
Revision as of 15:22, 24 April 2019
The BB84 protocol implements the task of Quantum Key Distribution (QKD). The protocol enables two parties, Alice and Bob, to establish a classical secret key by preparing and measuring qubits. The output of the protocol is a classical secret key which is completely unknown to any third party, namely an eavesdropper.
Tags: Two Party, Quantum Enhanced Classical Functionality, Specific Task,Quantum Key Distribution, Device Independent QKD,
Assumptions
- We assume the existence of an authenticated public classical channel between Alice and Bob.
- We assume that the network is synchronous.
- Adversarial model: coherent attacks.
Outline
The protocol shares a classical between two parties, Alice and Bob. The BB84 quantum key distribution protocol is composed by the following steps:
- Distribution: This step involves preparation, exchange and measurement of quantum states. For each round of the distribution phase, Alice randomly chooses a basis (a pair of orthogonal states) out of two available bases (X and Z). She then randomly chooses one of the two states and prepares the corresponding quantum state in the chosen basis. She sends the prepared state to Bob. Upon receiving the state, Bob announces that he received the state and randomly chooses to measure in the either of the two available bases (X or Z). The outcomes of the measurements give Bob a string of classical bits. The two parties repeat the above procedure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} times so that at the end of the distribution phase each of them holds an -bit string.
- Sifting: Both parties publicly announce their choices of basis and compare them. They discard the rounds in which Bob measured in a different basis than the one prepared by Alice.
- Parameter estimation: Both parties use a fraction of the remaining rounds (in which both measured in the same basis) in order to estimate the quantum bit error rate (QBER).
- Error correction: Both together, choose a classical error correcting code and publicly communicate in order to correct their string of bits. At the end of this phase both parties hold the same bit-string.
- Privacy amplification: Both use an extractor on the previously established string to generate a smaller but completely secret string of bits, which is the final key.
Hardware Requirements
- Network Stage: Prepare and Measure
- Relevant Network Parameters: (see Prepare and Measure)
- Benchmark values:
- Minimum number of rounds ranging from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}(10^2)} to depending on the network parameters, for commonly used secure parameters.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle QBER \leq 0.11} , taking a depolarizing model as benchmark. Parameters satisfying Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_T+\epsilon_M\leq 0.11} are sufficient.
- requires Authenticated classical channel, Random number generator.
Notation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} number of total rounds of the protocol.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} size of the secret key.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i, Y_i} bits of input of Alice and Bob, respectively, that define the measurement basis.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i,B_i} bits of output of Alice and Bob, respectively.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_A,K_B} final key of Alice and Bob, respectively.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_X} is the quantum bit error rate QBER in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} basis.
- is the quantum bit error rate QBER in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} basis estimated prior to the protocol.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} is the Hadamard gate. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{0} = I, H^{1} = H} .
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} is the probability that Alice (Bob) prepares (measures) a qubit in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} basis.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm EC}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon'_{\rm EC}} are the error probabilities of the error correction protocol.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm PA}} is the error probability of the privacy amplification protocol.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm PE}} is the error probability of the parameter estimation.
Properties
The protocol-
- is Information-theoretically secure
- requires synchronous network, authenticated public classical channel, secure from coherent attacks
- implements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n,\epsilon_{\rm corr},\epsilon_{\rm sec},\ell)} -QKD, which means that it generates an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm corr}} -correct, -secret key of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} rounds. The security parameters of this protocol are give by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm corr}=\epsilon_{\rm EC},</br> \epsilon_{\rm sec}= \epsilon_{\rm PA}+\epsilon_{\rm PE},}
and the amount of key Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell}
that is generated is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell\geq (1-\gamma)^2n (1-h(Q_X+\nu) -h(Q_Z))}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{(1-\gamma)^2n}\big(4\log(2\sqrt{2}+1)(\sqrt{\log\frac{2}{\epsilon_{\rm PE}^2}}+ \sqrt{\log \frac{8}{{\epsilon'}_{\rm EC}^2}}))}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\log(\frac{8}{{\epsilon'}_{\rm EC}^2}+\frac{2}{2-\epsilon'_{\rm EC}})-\log (\frac{1}{\epsilon_{\rm EC}})- 2\log(\frac{1}{2\epsilon_{\rm PA}})}
whereFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu = \sqrt{ \frac{(1+\gamma^2n)((1-\gamma)^2+\gamma^2)}{(1-\gamma)^2\gamma^4n^2}\log(\frac{1}{\epsilon_{\rm PE}}})}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\cdot)}
is the binary entropy function.
In the above equation for key length, the parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm EC}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon'_{\rm EC}} are error probabilities of the classical error correction subroutine. At the end of the error correction step, if the protocol does not abort, then Alice and Bob share equal strings of bits with probability at least Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-\epsilon_{\rm EC}} . The parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon'_{\rm EC}} is related with the completeness of the error correction subroutine, namely that for an honest implementation, the error correction protocol aborts with probability at most Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon'_{\rm EC}+\epsilon_{\rm EC}} . The parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm PA}} is the error probability of the privacy amplification subroutine and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm PE}} is the error probability of the parameter estimation subroutine used to estimate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_X} . (See Quantum Key Distribution for the precise security definition)
Pseudo Code
- Input:Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, \gamma, \epsilon_{\rm PA},\epsilon_{\rm PE},\epsilon_{\rm EC},\epsilon'_{\rm EC},Q_Z}
- Output:
Stage 1 Distribution and measurement
- For i=1,2,...,n
- Alice chooses random bits Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i\epsilon\{0,1\}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i\epsilon_R\{0,1\}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X_i=1)=\gamma}
- Alice prepares Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{X_i}|A_i\rangle} and sends it to Bob
- Bob announces receiving a state
- Bob chooses bit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_i\in_R\{0,1\}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(Y_i=1)=\gamma}
- Bob measures Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{X_i}|A_i\rangle} in basis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{H^{Y_i}|0\rangle, H^{Y_i}|1\rangle\}} with outcome Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_i}
- At this stage Alice holds strings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1^n, A_1^n} and Bob Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^n, B_1^n} , all of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n}
Stage 2 Sifting
- Alice and Bob publicly announce Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1^n, Y_1^n}
- For i=1,2,....,n
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i=Y_i}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1^{n'} = A_1^{n'}.} append</math>(A_i)</math>
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_1^{n'} = B_1^{n'}.} appendFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (B_i)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1^{n'} = X_1^{n'}.} appendFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X_i)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^{n'} = Y_1^{n'}.} appendFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (Y_i)}
- If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i=Y_i}
- Now Alice holds strings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1^{n'}, A_1^{n'}} and Bob Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^{n'}, B_1^{n'}} , all of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n'\leq n}
Stage 3 Parameter estimation
- For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,...,n}
- sizeFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} = 0
- If{Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i = Y_i = 1}
- Alice and Bob publicly announce Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i, B_i}
- Alice and Bob compute , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{A_iB_i}} is the Kronecker delta
- sizeFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} += 1\;
- Both Alice and Bob, each, compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_X = \frac{1}{\text{size}Q} \sum_{i=1}^{n'}Q_i}
Stage 4 Error correction
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(\cdot,\cdot)} is an error correction subroutine determined by the previously estimated value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_Z} and with error parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon'_{\rm EC}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm EC}}
- Both Alice and Bob run Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(A_1^{n'},B_1^{n'})} .
- Bob obtains Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{B}_1^{n'}}
Stage 5 Privacy amplification
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle PA(\cdot,\cdot)} is a privacy amplification subroutine determined by the size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} , computed from equation for key length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} (see Properties), and with secrecy parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\rm PA}}
- Alice and Bob run Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle PA(A_1^{n'},\tilde{B}_1^{n'})} and obtain secret keys Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_A, K_B} \;
Further Information
- BB(1984) introduces the BB84 protocol, as the name says, by Charles Bennett and Gilles Brassard.
- TL(2017) The derivation of the key length in Properties, combines the techniques developed in this article and minimum leakage error correcting codes.
- GL03 gives an extended analysis of the BB84 in the finite regime.
- Sifting: the BB84 protocol can also be described in a symmetric way. This means that the inputs Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} are chosen with the same probability. In that case only Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2} of the generated bits are discarded during the sifting process. Indeed, in the symmetric protocol, Alice and Bob measure in the same basis in about half of the rounds.
- LCA05 the asymmetric protocol was introduced to make this more efficient protocol presented in this article.
- A post-processing of the key using 2-way classical communication, denoted Advantage distillation, can increase the QBER tolarance up to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 18.9\%} (3).
- We remark that in Pseudo Code, the QBER in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} basis is not estimated during the protocol. Instead Alice and Bob make use of a previous estimate for the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_Z} and the error correction step, Step 4 in the pseudo-code, will make sure that this estimation is correct. Indeed, if the real QBER is higher than the estimated value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_Z} , Pseudo Code will abort in the Step 4 with very high probability.
- The BB84 can be equivalently implemented by distributing EPR pairs and Alice and Bob making measurements in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} basis, however this required a entanglement distribution network stage.