Prepare-and-Measure Certified Deletion: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
mNo edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<!-- Intro: brief description of the protocol --> | <!-- Intro: brief description of the protocol --> | ||
This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. | This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. This scheme is limited to the single-use, private-key setting. | ||
<!--Tags: related pages or category --> | <!--Tags: related pages or category --> | ||
== | ==Requirements== | ||
* '''Network Stage: ''' [[:Category:Prepare and Measure Network Stage| Prepare and Measure]] | |||
==Outline== | ==Outline== | ||
Line 20: | Line 20: | ||
==Notation== | ==Notation== | ||
<!-- Connects the non-mathematical outline with further sections. --> | <!-- Connects the non-mathematical outline with further sections. --> | ||
* For any string <math>x \in \{0,1\}^n</math> and set <math>\mathcal{I} \subseteq [n], x|_\mathcal{I}</math> denotes the string <math>x</math> restricted to the bits indexed by <math>\mathcal{I}</math> | |||
* For <math>x,\theta \in \{0,1\}^n, |x^\theta\rangle = H^\theta|x\rangle = H^{\theta_1}|x_1\rangle \otimes H^{\theta_2}|x_2\rangle \otimes ... \otimes H^{\theta_n}|x_n\rangle</math> | |||
* <math>\mathcal{Q} := \mathbb{C}^2</math> denotes the state space of a single qubit,<math>\mathcal{Q}(n) := \mathcal{Q}^{\otimes n}</math> | |||
* <math>\mathcal{D(H)}</math> denotes the set of density operators on a Hilbert space <math>\mathcal{H}</math> | |||
* <math>\lambda</math>: Security parameter | |||
* <math>n</math>: Length, in bits, of the message | |||
* <math>\omega : \{0,1\} \rightarrow \mathbb{N}</math> : Hamming weight function | |||
* <math>m = \kappa(\lambda)</math>: Total number of qubits sent from encrypting party to decrypting party | |||
* <math>k</math>: Length, in bits, of the string used for verification of deletion | |||
* <math>s = m - k</math>: Length, in bits, of the string used for extracting randomness | |||
* <math>\tau = \tau(\lambda)</math>: Length, in bits, of error correction hash | |||
* <math>\mu = \mu(\lambda)</math>: Length, in bits, of error syndrome | |||
* <math>\theta</math>: Basis in which the encrypting party prepare her quantum state | |||
* <math>\delta</math>: Threshold error rate for the verification test | |||
* <math>\Theta</math>: Set of possible bases from which \theta is chosen | |||
* <math>\mathfrak{H}_{pa}</math>: Universal<math>_2</math> family of hash functions used in the privacy amplification scheme | |||
* <math>\mathfrak{H}_{ec}</math>: Universal<math>_2</math> family of hash functions used in the error correction scheme | |||
* <math>H_{pa}</math>: Hash function used in the privacy amplification scheme | |||
* <math>H_{ec}</math>: Hash function used in the error correction scheme | |||
* <math>synd</math>: Function that computes the error syndrome | |||
* <math>corr</math>: Function that computes the corrected string | |||
<!--==Knowledge Graph== --> | <!--==Knowledge Graph== --> | ||
<!-- Add this part if the protocol is already in the graph --> | <!-- Add this part if the protocol is already in the graph --> | ||
<!-- {{graph}} --> | <!-- {{graph}} --> | ||
==Protocol Description== | ==Protocol Description== | ||
Line 91: | Line 108: | ||
<!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. --> | <!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. --> | ||
== | ==Properties== | ||
<!-- | <!-- important information on the protocol: parameters (threshold values), security claim, success probability... --> | ||
This scheme has the following properties: | |||
*'''Correctness''': The scheme includes syndrome and correction functions and is thus robust against a certain amount of noise, i.e. below a certain noise threshold, the decryption circuit outputs the original message with high probability. | |||
*'''Ciphertext Indistinguishability''': This notion implies that an adversary, given a ciphertext, cannot discern whether the original plaintext was a known message or a dummy plaintext <math>0^n</math> | |||
*'''Certified Deletion Security''': After producing a valid deletion certificate, the adversary cannot obtain the original message, even if the key is leaked (after deletion). | |||
==References== | |||
* The scheme along with its formal security definitions and their proofs can be found in [https://arxiv.org/abs/1910.03551 Broadbent & Islam (2019)] | |||
= | <div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div> |
Latest revision as of 00:25, 9 February 2022
This example protocol implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. This scheme is limited to the single-use, private-key setting.
Requirements[edit]
- Network Stage: Prepare and Measure
Outline[edit]
The scheme consists of 5 circuits-
- Key: This circuit generates the key used in later stages
- Enc: This circuit encrypts the message using the key
- Dec: This circuit decrypts the ciphertext using the key and generates an error flag bit
- Del: This circuit deletes the ciphertext state and generates a deletion certificate
- Ver: This circuit verifies the validity of the deletion certificate using the key
Notation[edit]
- For any string and set denotes the string restricted to the bits indexed by
- For
- denotes the state space of a single qubit,
- denotes the set of density operators on a Hilbert space
- : Security parameter
- : Length, in bits, of the message
- : Hamming weight function
- : Total number of qubits sent from encrypting party to decrypting party
- : Length, in bits, of the string used for verification of deletion
- : Length, in bits, of the string used for extracting randomness
- : Length, in bits, of error correction hash
- : Length, in bits, of error syndrome
- : Basis in which the encrypting party prepare her quantum state
- : Threshold error rate for the verification test
- : Set of possible bases from which \theta is chosen
- : Universal family of hash functions used in the privacy amplification scheme
- : Universal family of hash functions used in the error correction scheme
- : Hash function used in the privacy amplification scheme
- : Hash function used in the error correction scheme
- : Function that computes the error syndrome
- : Function that computes the corrected string
Protocol Description[edit]
Circuit 1: Key[edit]
The key generation circuit
Input : None
Output: A key state
- Sample
- Sample where
- Sample
- Sample
- Sample
- Sample
- Sample
- Output
Circuit 2: Enc[edit]
The encryption circuit
Input : A plaintext state and a key state
Output: A ciphertext state
- Sample where
- Compute where
- Compute
- Compute
- Output
Circuit 3: Dec[edit]
The decryption circuit
Input : A key state and a ciphertext
Output: A plaintext state and an error flag
- Compute
- Measure in the computational basis. Call the result
- Compute where
- Compute
- If , then set . Else, set
- Compute
- Output
Circuit 4: Del[edit]
The deletion circuit
Input : A ciphertext
Output: A certificate string
- Measure in the Hadamard basis. Call the output y.
- Output
Circuit 5: Ver[edit]
The verification circuit
Input : A key state and a certificate string
Output: A bit
- Compute where
- Compute
- If , output . Else, output .
Properties[edit]
This scheme has the following properties:
- Correctness: The scheme includes syndrome and correction functions and is thus robust against a certain amount of noise, i.e. below a certain noise threshold, the decryption circuit outputs the original message with high probability.
- Ciphertext Indistinguishability: This notion implies that an adversary, given a ciphertext, cannot discern whether the original plaintext was a known message or a dummy plaintext
- Certified Deletion Security: After producing a valid deletion certificate, the adversary cannot obtain the original message, even if the key is leaked (after deletion).
References[edit]
- The scheme along with its formal security definitions and their proofs can be found in Broadbent & Islam (2019)
*contributed by Chirag Wadhwa