Editing
Verifiable Quantum Anonymous Transmission
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further Information== * For simplicity, the same security parameter <math>q</math> has been used throughout, however, this is not required. * Although <span style="font-variant:small-caps">Parity</span> requires a simultaneous broadcast channel, only modified versions of <span style="font-variant:small-caps">Parity</span> that remove this requirement are used in the anonymous transmission protocol. * The protocol assumes there is only one Sender for simplicity. However, if this is not the case, the players can run a classical [[Verifiable Quantum Anonymous Transmission#References|[3]]] or quantum [[Verifiable Quantum Anonymous Transmission#References|[2]]] collision detection protocol to deal with multiple Senders. * To send classical teleportation bits <math>m_0, m_1</math>, the players can run <span style="font-variant:small-caps">Fixed Role Anonymous Message Transmission</span> from [[Verifiable Quantum Anonymous Transmission#References|[3]]], or the anonymous transmission protocol for classical bits with quantum resources from [[Verifiable Quantum Anonymous Transmission#References|[2]]]. * <span style="font-variant:small-caps">Verification</span> was experimentally demonstrated for 3- and 4-party GHZ states in [[Verifiable Quantum Anonymous Transmission#References|[5]]]. * The Broadbent-Tapp protocol [[Verifiable Quantum Anonymous Transmission#References|[3]]] implements classical anonymous transmission. It requires pairwise authenticated classical channels and a classical broadcast channel. * The Christandl-Wehner protocol [[Verifiable Quantum Anonymous Transmission#References|[2]]] implements both classical and quantum anonymous transmission. However, this protocol assumes the nodes share a perfect, trusted GHZ state. * The Brassard et. al. protocol [[Verifiable Quantum Anonymous Transmission#References|[6]]] implements verified quantum anonymous transmission. While their protocol includes a verification stage, it requires each player to perform a size-<math>n</math> quantum circuit and to have access to quantum communication with all other agents. * The Lipinska et. al. protocol [[Verifiable Quantum Anonymous Transmission#References|[7]]] implements quantum anonymous transmission with a trusted W state instead of a GHZ state. While this is beneficial in terms of robustness to noise, the protocol proceeds to create anonymous entanglement only probabilistically, whereas GHZ-based anonymous entanglement proceeds deterministically.
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information