Editing
Secure Multiparty Delegated Quantum Computation
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== *Enforcing honest behavior for client <math>C_k</math> # Client <math>C_k</math> sends <math>m</math> qubits <math>|+_{\theta_i^k}\rangle=\frac{1}{\sqrt{2}}(|0\rangle+e^{i\theta_i^k}|1\rangle)</math> to the Server and secret-shares the values <math>\{\theta_i^k\}_{i=1}^m</math> with all clients, using a VSS scheme. # The Server requests the shared values from the clients for all but one qubit, and measures in the resconstructed bases. If the bases agree with the results of the measurements, then with high probability, the remaining state is correctly formed in relation to the shared angle. *State preparation for <math>j\in I</math>) #Server stores states received from clients <math>C_k</math> to distinct registers <math>\mathcal{S}_k\subset \mathcal{S}</math> (<math>k=1,\dots,n</math>); ##for <math>k=1,\dots,n-1</math> ###if <math>k=j</math> '''then''' break; ###if <math>k=n-1</math> and <math>j=n</math> '''then''' break; ###if <math>k=j-1</math>, '''then''' ####CNOT on <math>\mathcal{S}_k\otimes\mathcal{S}_{k+2}</math>; ###'''else''' ####CNOT on <math>\mathcal{S}_k\otimes\mathcal{S}_{k+1}</math>; ###measure state in <math>\mathcal{S}_k</math> and get outcome <math>t_j^k</math>; ##if <math>j=n</math> '''then''' ###CNOT on <math>\mathcal{S}_{n-1}\otimes\mathcal{S}_n</math>; ####Measure state in <math>\mathcal{S}_{n-1}</math> and get outcome <math>t_n^{n-1}</math>; ##else ###CNOT on <math>(\mathcal{S}_{n}\otimes\mathcal{S}_j)</math>; ####Measure state in <math>\mathcal{S}_n</math> and get outcome <math>t_j^n</math>; \begin{figure}[H] \centerline{ \Qcircuit @C=0.5em @R=1.5em { \lstick{C_1:20:28, 17 April 2019 (CEST)20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^1}}} &\qw &\targ &\meter & \cw & t_j^1\\ \lstick{C_2:20:28, 17 April 2019 (CEST)20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^2}}} &\qw &\ctrl{-1}&\qw &\targ & \meter & \cw & t_j^2\\ \lstick{C_3:20:28, 17 April 2019 (CEST)20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^3}}} &\qw &\qw &\qw &\ctrl{-1} &\qw &\targ{+1} & \meter & \cw & \cw &[[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST) t_j^3\\ \lstick{\vdots \hspace{1in}\vdots} & & & & & & \vdots & & & & & & & & & & \ddots \\ \lstick{C_n:20:28, 17 April 2019 (CEST)20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^n}}} &\qw &\qw &\qw & \qw &\qw &\qw &\qw &\qw & \qw &\qw &\qw &\qw & \qw &\ctrl{-1} &\qw &\targ & \meter & \cw & \cw &20:28, 17 April 2019 (CEST)~ t_j^n\\ \lstick{C_j:~X^{a_j}Z(\theta_j^j)\big[\mathcal{C}_j\big] } [[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST) &\qw &\qw &\qw & \qw &\qw &\qw &\qw &\qw & \qw &\qw &\qw & \qw & \qw & \qw &\qw & \ctrl{-1} &\qw & \qw & & &\hspace{0.7in}X^{a_j}Z(\theta_j)\big[\mathcal{C}_j\big] \\\\ } } \caption{Remote State Preparation with quantum input (Protocol \ref{Algo2}). Client </math>C_j</math> performs a one-time pad on his register </math>\mathcal{C}_j</math> and the result of the circuit remains one-time padded, where </math>\theta_j=\theta_j^j+\sum_{k=1,k\neq j}^n (-1)^{\bigoplus_{i=k}^n t_j^i+a_j}\theta_j^k</math>.}\label{fig:algo1} \end{figure} ====State preparation for (<math>j\in O^c\setminus I</math>)==== # Server stores states received from clients <math>C_k</math> to distinct registers <math>\mathcal{S}_k\subset \mathcal{S}</math> (<math>k=1,\dots,n</math>); # For <math>k=1,\dots,n-1</math> ## CNOT on <math>\mathcal{S}_k\otimes\mathcal{S}_{k+1}</math>; ## Measure state in <math>\mathcal{S}_k</math> and get outcome <math>t_j^k</math>; \begin{figure}[H] \centerline{ \Qcircuit @C=0.5em @R=1.5em { \lstick{C_1:[[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^1}}} &\qw &\targ &\meter & \cw & t_j^1\\ \lstick{C_2:[[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^2}}} &\qw &\ctrl{-1}&\qw &\targ & \meter & \cw & t_j^2\\ \lstick{C_3:[[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^3}}} &\qw &\qw &\qw &\ctrl{-1} &\qw &\targ & \meter & \cw & \cw &[[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST) t_j^3\\ \lstick{\vdots \hspace{0.7in}\vdots} \hspace{0.5in} & & & & & & \vdots & & & & & & & & & & \ddots \\ \lstick{C_{n-1}:\hspace{0.1in}\ket{+_{\theta_j^{n-1}}}} &\qw &\qw &\qw & \qw &\qw &\qw &\qw &\qw & \qw &\qw &\qw &\qw & \qw &\ctrl{-1} &\qw &\targ & \meter & \cw & \cw & 20:28, 17 April 2019 (CEST) t_j^{n-1}\\ \lstick{C_n:[[User:Shraddha|Shraddha]] ([[User talk:Shraddha|talk]]) 20:28, 17 April 2019 (CEST)\ket{+_{\theta_j^n}}} &\qw &\qw &\qw & \qw &\qw &\qw &\qw &\qw & \qw &\qw &\qw & \qw & \qw & \qw &\qw & \ctrl{-1} &\qw & \qw & & &\hspace{0.3in}\mathbf{\ket{+_{\theta_j}}}\\ } } \caption{Remote State Preparation without quantum input (Protocol \ref{Algo3}), where </math>\theta_j=\theta_j^n+\sum_{k=1}^{n-1} (-1)^{\bigoplus_{i=k}^{n-1} t_j^i}\theta_j^k</math>.}\label{fig:algo2} \end{figure} ====Multiparty Quantum Computing Protocol==== * A quantum input <math>\rho_{in}</math> and measurement angles <math>\{\phi_j\}_{j=1}^q</math> for qubits <math>j\in O^c</math> . '''Preparation phase''' ''Quantum input'': For <math>j\in I</math> # Client <math>C_j</math> applies a one-time pad <math>X^{a_j}Z(\theta_j^j)</math> to his qubit, where <math>a_j\in_R\{0,1\}</math> and <math>\theta_j^j\in_R\{l\pi/4\}_{l=0}^7</math> and sends it to the Server. He secret-shares the values <math>a_j</math> and <math>\theta_j^j</math> with the other clients. # Each client <math>C_k (k\neq j)</math>, runs Protocol 1 with the Server. If all clients pass the test, the Server at the end has <math>n-1</math> states <math>|+_{\theta_j^k}\rangle=\frac{1}{\sqrt{2}}\big(|0\rangle+e^{i\theta_j^k}|1\rangle \big)</math> for <math>k\neq j</math>. # The Server runs Protocol2 and announces outcome vector <math>\mathbf{t}_j</math>. At this point the Server has the state <math>\rho'_{in}=\big(X^{a_1}Z(\theta_1)\otimes \dots \otimes X^{a_n} Z(\theta_n)\otimes \mathbf{1}_{\mathcal{R}}\big)\cdot \rho_{in}</math>, where <math>\theta_j=\theta_j^j+\sum_{k=1, k\neq j}^n (-1)^{\bigoplus_{i=k}^n t_j^i+a_j}\theta_j^k </math> # [non-output / non-input qubits:] For <math>j\in O^c\setminus I</math> \begin{enumerate} \item[4.] All clients </math>C_k</math>, </math>k\in[n]</math> run Protocol \ref{Algo1} with the Server. If all clients pass the test, the Server at the end has </math>n</math> states </math>\ket{+_{\theta_j^k}}=\frac{1}{\sqrt{2}}\big(\ket{0}+e^{i\theta_j^k}\ket{1} \big)</math> for </math>k=1,\dots,n</math>. \item[5.] The Server runs Protocol \ref{Algo3} getting outcome vector </math>\mathbf{t}_j</math>. He ends up with the state </math>\ket{+_{\theta_j}}</math>, where: \begin{equation}\label{eq:entangle2} \theta_j=\theta_j^n+\sum_{k=1}^{n-1} (-1)^{\bigoplus_{i=k}^{n-1} t_j^i}\theta_j^k \end{equation} \end{enumerate} \item[output qubits:] For </math>j\in O</math>, the Server prepares </math>\ket{+}</math> states. \item[graph state:] The Server entangles the </math>n+q</math> qubits to a brickwork state by applying ctrl-</math>Z</math> gates. \end{description} \begin{flushleft} \underline{\emph{Computation phase}} \vspace{-7pt} \end{flushleft} \begin{description} \item[non-output qubits:] For </math>j\in O^c</math> \begin{enumerate} \item All clients </math>C_k</math>, </math>k=1,\dots,n</math> choose random </math>r_j^k\in\{0,1\}</math>, which they secret-share with the other clients. Then using a computation oracle, they compute the measurement angle of qubit </math>j</math>: \begin{equation}\label{angle} \delta_j:=\phi'_j+\pi r_j+\theta_j \end{equation} where undefined values are equal to zero, or otherwise: \begin{itemize} \item </math>\phi'_j=(-1)^{a_j+s_j^X}\phi_j+s^Z_j\pi+a_{f^{-1}(j)}\pi</math>. \item </math>r_j=\bigoplus\limits_{k=1}^n r_j^k</math>. \item </math>s_i=b_i\oplus r_i</math>, for </math>i\leq j</math>. \end{itemize} \item The Server receives </math>\delta_j</math> and measures qubit </math>j</math> in basis </math>\{\ket{+_{\delta_j}},\ket{-_{\delta_j}}\}</math>, getting result </math>b_j</math>. He announces </math>b_j</math> to the clients. \end{enumerate} \item[output qubits:] For </math>j\in O</math>, the Server sends the ``encrypted'' quantum state to client </math>C_{j-q}</math>. All participants jointly compute </math>s_j^X</math> and </math>s_j^Z</math> and send it to client </math>C_{j-q}</math>, who applies operation </math>Z^{s_j^Z}X^{s_j^X}</math> to retrieve the actual quantum output. \end{description} \end{algorithm} <div style='text-align: right;'>''*contributed by Natansh Mathur''</div>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information