Editing
Prepare-and-Send Quantum Fully Homomorphic Encryption
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== ===Stage 1 Client’s Preparation=== '''Key Generation (QFHE.KeyGen(1k,1L))''' *Input: No. of T gates (L), Security Parameter (k), *Output: L+1 evaluation keys (encrypted Gadgets, classical HE evaluation key), L+1 public keys, L+1 secret keys # For i = 0 to L ## Client executes <math>(pk_i, sk_i, evk_i) \leftarrow \text{HE.KeyGen}(1^{\kappa})</math> to obtain <math>L+1</math> independent classical homomorphic key sets. # She sets the public key to be the tuple <math>(pk_i)_{i = 0}^{L}</math>. # She sets the secret key to be the tuple <math>(sk_i)_{i = 0}^{L}</math>. # For i = 0 to L-1 ## Client runs the procedure <math>\text{QFHE.GenGadget}_{pk_{i+1}}(sk_i)</math> to create the gadget <math>\Gamma_{pk_{i+1}}(sk_i)</math>. # Client sets the evaluation key to be the set of all gadgets created in the previous step (including their encrypted classical information), plus the tuple <math>(evk_i)_{i=0}^L</math>. The resulting evaluation key is the classical-quantum (CQ) state</br><math>\bigotimes_{i = 0}^{L-1}\Big(\Gamma _{pk_{i+1}}(sk_i)\otimes |evk_i\rangle \langle evk_i|)</math> '''Encryption(QFHE.Enc())''' *Input: Quantum Input state density matrix (<math>\rho</math>) (say composed of n single qubit states, <math>\sigma</math>) *Output: Encrypted pad keys:<math>\{\tilde{a}^{[0]}...\tilde{a}^{[n]}</math>,<math>\tilde{b}^{[i]}...\tilde{b}^{[n]}\}</math>; QOTP state: <math>X^{a^{[1]}}Z^{b^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}\rho Z^{b^{[1]}}X^{a^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}</math> # For i=1 to n ## Client chooses pad keys a,b <math>\epsilon_R\{0,1\}</math> ## She quantum one time pads the single qubit by applying $X^aZ^b$ on the single qubit state. <math>X^aZ^b\sigma Z^bX^a\leftarrow\sigma</math> ## She encrypts the pad keys using one bit for each of a and b from the public key string <math>pk_0</math> using HE.Enc. (<math>\tilde{a}^{[i]},\tilde{b}^{[i]}</math>)=(HE.Enc<math>_{pk_0^{[i]}}(a^{[i]}</math>),HE.Enc<math>_{pk_0^{[i]}}(b^{[i]}))\leftarrow</math> (a,b) ## She apprehends encrypted pad keys to the one time padded quantum state to obtain CQ state, <math>\sum_{a,b\epsilon\{0,1\}}\frac{1}{4}\rho(HE.Enc_{pk_0^{[i]}}(a^{[i]}),HE.Enc_{pk_0^{[i]}}(b^{[i]}))\otimes X^aZ^b\sigma Z^bX^a</math> #Client sends encryptions (<math>\tilde{a}^{[i]},\tilde{b}^{[i]}</math>) and the quantum one time padded (QOTP) state<math> X^{a^{[1]}}Z^{b^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}\rho Z^{b^{[1]}}X^{a^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}} \forall i</math>, to the Server with the evaluation keys and public keys. '''Gadget Construction (<math>\text{QFHE.GenGadget}_{pk_{i+1}}(sk_i)</math>)''' # Generate <math>4m</math> EPR pairs (<math>|\phi\rangle=\frac{1}{\sqrt{2}}(00+11))</math>, <math>\{(a_1,b_1),...,(a_{4m},b_{4m})\}</math> # Choose <math>2m</math> pairs <math>\epsilon \{a_1, a_2,....,a_{4m}\}</math> using sk ## If <math>(sk=0)</math> then <math>\{(a_1,a_2),(a_2,a_3),...,(a_{4m-1},a_{4m})\}</math> ## If <math>(sk=1)</math> then <math>\{(a_1,a_3),(a_2,a_4),...,(a_{4m-2},a_{4m})\}</math> # For j=1 to 2m, ## Choose p[j] <math>\epsilon_R \{0,1\}</math> ## Perform Bell Measurement on <math>j^{th}</math> pair with an extra <math>(P^\dagger)^p</math> operation, get outcomes (x[j],z[j]) ## Thus, new EPR pairs are ### If <math>(sk=0)</math> then <math>\{(b_1,b_2),(b_2,b_3),...,(b_{4m-1},b_{4m})\}</math> ### If <math>(sk=1)</math> then <math>\{(b_1,b_3),(b_2,b_4),...,(b_{4m-2},b_{4m})\}</math> ## Denote the <math>2m</math> entangled pairs be denoted by <math>\{(s_1,t_1),(s_2,t_2),...,(s_{2m},t_{2m})\}</math>, such that ## The classical information of gadget be g(sk)<math>=(\{(s_1,t_1),(s_2,t_2),...,(s_{2m},t_{2m}),p,sk\}</math>. ## The quantum state of gadget can be written as <math>\gamma_{x,z}(g(sk))=\pi_{j=1}^mX^{x[i]}Z^{z[i]}(P^\dagger){p[i]}|\phi\rangle\langle\phi|_{s_jt_j}(P^\dagger){p[i]}Z^{z[i]}X^{x[i]}</math> # Encrypt (x[j],z[j]), p[j] for all j and sk using <math>pk_{i+1}</math>. Resulting Gadget is the classical-quantum (CQ) state, <math>\Gamma_{pk_{i+1}}(sk_i)=\rho(HE.Enc_{pk_{i+1}}(g(sk))\otimes \frac{1}{2^{2m}}\sum_{x,z\epsilon\{0,1\}^m}\rho(HE.Enc_{pk_{i+1}}(x,z)\otimes \gamma_{x,z}(g(sk))</math> === Stage 2 Server’s Computation=== '''Circuit's Evaluation (QFHE.Eval())''' *'''Input:''' public key tuple <math>(pk_i)_{i = 0}^{L}</math>, Evaluation key tuple, Encrypted Pad key (<math>\{\tilde{a}^{[0]}...\tilde{a}^{[n]}</math>, <math>\tilde{b}^{[i]}...\tilde{b}^{[n]}\}</math>), QOTP Input State (<math> X^{a^{[1]}}Z^{b^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}\rho Z^{b^{[1]}}X^{a^{[1]}}\otimes.....\otimes X^{a^{[n]}}Z^{b^{[n]}}</math>)</br> *'''Output:''' QOTP Circuit Output State (<math> X^{a'^{[1]}}Z^{b'^{[1]}}\otimes.....\otimes X^{a'^{[k]}}Z^{b'^{[k]}}\rho' Z^{b'^{[1]}}X^{a'^{[1]}}\otimes.....\otimes X^{a'^{[k]}}Z^{b'^{[k]}}</math>), Corresponding Encrypted Pad key (<math>\tilde{a'},\tilde{b'}</math>)=(HE.Eval<math>_{evk_L}^\text{C}(\tilde{a}</math>),HE.Eval<math>_{evk_L}^\text{C}(\tilde{b}</math>))</br></br> Let the Circuit be denoted by C and the gates be <math>c_i</math> # For all i, <math>c_i</math> gate is applied on qubit m and the <math>m_{th}</math> bits of pad key <math>(\tilde {a}^{[m]},\tilde{b}^{[m]})</math> are updated to <math>(\tilde {a}'^{[m]},\tilde{b}'^{[m]})</math> as follows. ## If <math>c_i=\{P,H,CNOT\}</math>, a Clifford gate then <math>c_iX^{a^{[m]}}Z^{b^{[m]}}\psi=X^{a'^{[m]}}Z^{b'^{[m]}}c_i\psi</math>) ### if <math>c_i=</math>H then: <math>(\tilde {a}^{[m]},\tilde{b}^{[m]})\rightarrow (\tilde{b}^{[m]},\tilde{a}^{[m]})</math> (Hadamard tranforms X gate into Z and Z into X) ### if <math>c_i=</math>P then: <math>(\tilde {a}^{[m]},\tilde{b}^{[m]})\rightarrow (\tilde{a}^{[m]},\tilde{a}^{[m]}\oplus\tilde{b}^{[m]})</math> ### if <math>c_i=</math>CNOT with m as target bit and n as control bit then: <math>(\tilde {a}^{[m]},\tilde{b}^{[m]};\tilde {a}^{[n]},\tilde{b}^{[n]})\rightarrow (\tilde {a}^{[m]},\tilde{b}^{[m]}\oplus \tilde {b}^{[n]};\tilde{a}^{[m]}\oplus \tilde {a}^{[n]},\tilde{b}^{[n]})</math> ## If <math>c_i=T_j</math> gate then: <math> (T_jX^{a^{[m]}}Z^{b^{[m]}}\psi=P^{a^{[m]}}X^{a^{[m]}}Z^{b^{[m]}}T_j\psi)</math> ###'''Generate Measurement''' M<math>\leftarrow</math> QFHE.GenMeasurement(<math>\tilde {a}^{[m]},\Gamma_{pk_{j+1}}(sk_j),evk_j)</math> ###'''Gadget Correction'''<math>(X^{a'^{[m]}}Z^{b'^{[m]}}T_j)\psi\leftarrow</math> QFHE.Measurement(M, <math>P^{a^{[m]}}X^{a^{[m]}}Z^{b^{[m]}}T_j\psi)</math> ### Server gets measurement outcome x',z' ###'''Recryption''' Server recrypts one-pad key using pk<math>_{k+1}</math> (<math>\tilde {a''}^{[m]},\tilde{b''}^{[m]})\leftarrow</math> QFHE.Rec<math>_{pk_{k+1}}(\tilde {a}^{[m]},\tilde{b}^{[m]})</math> ### Server updates the recrypted key using x,z and x',z'. (<math>\tilde {a'}^{[m]},\tilde{b'}^{[m]})\leftarrow (\tilde {a''}^{[m]},\tilde{b''}^{[m]}</math>) ## Server sends the updated encryption and QOTP output state to Client. ===Stage 3 Client’s Correction=== '''Decryption (QFHE.Dec()) *'''Input:''' QOTP Circuit Output State (<math> X^{a'^{[1]}}Z^{b'^{[1]}}\otimes.....\otimes X^{a'^{[k]}}Z^{b'^{[k]}}\rho' Z^{b'^{[1]}}X^{a'^{[1]}}\otimes.....\otimes X^{a'^{[k]}}Z^{b'^{[k]}}</math>), Corresponding Encrypted Pad key (<math>\tilde{a'},\tilde{b'}</math>) *'''Output:''' Final outcome of the computation C<math>\rho</math>C<math>^\dagger=\rho'</math> # Client uses <math>sk_L</math> to restore the pad key from sent encryption: (<math>{a'}^{[i]},{b'}^{[i]}</math>)=(HE.Dec<math>_{sk_L^{[i]}}(a'^{[i]}</math>),HE.Dec<math>_{pk_L^{[i]}}(b'^{[i]}))</math> # Client uses pad key and operates <math>X^{a'^{[i]}}Z^{b'^{[i]}}</math> on single qubits i separately just like encryption. ##Let single qubit representation of the output state be <math>X^{a'^{[i]}}Z^{b'^{[i]}}\sigma' Z^{b'^{[i]}}X^{a'^{[i]}}</math>, then operation of Pauli X,Z gates as above yields <math>\sigma'</math> # Client repeats this for all single qubits and hence gets the quantum state <math>\rho'</math>, final outcome of the computation.
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information