Editing
Phase Co-variant Cloning
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== ===General Information=== *The to-be-cloned states of the phase-covariant cloner are equatorial states of the form:</br> <math>|\psi(\phi)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{i\phi}|1\rangle)</math></br> *Equatorial states could be written in density matrix representation as:</br> <math>|\psi(\phi)\rangle\langle\psi(\phi)| = \frac{1}{2}(\mathbb{I} + cos\phi\sigma_x + sin\phi\sigma_y)</math></br> where <math>\sigma_x</math> and <math>\sigma_y</math> are [[Pauli Operators]].</br> *The action of a general phase-covariant QCM is described by a map $T$ acting as follows:</br> <math>T(|\psi(\phi)\rangle\langle\psi(\phi)|) = \eta|\psi(\phi)\rangle\langle\psi(\phi)| + (1-\eta)\frac{\mathbb{I}}{2}</math></br> where <math>\eta</math> is the shrinking factor. This relation holds for all <math>\phi</math>, which guarantees that the cloning machine to act equally well on all the equatorial states. Now we investigate different types of the protocol: ===Phase-covariant cloning without ancilla=== '''Input:''' <math>|\psi(\phi)\rangle|0\rangle</math> '''Output:''' <math>\frac{1}{\sqrt{2}}(|00\rangle + cos\eta e^{i\phi}|10\rangle + sin\eta e^{i\phi} |01\rangle)</math> #Perform a unitary transformation described as follows:</br> <math>U_{pc}|00\rangle = |00\rangle</math></br> <math>U_{pc}|10\rangle = cos\eta|10\rangle + sin\eta|01\rangle</math></br> ===Phase-covariant cloning with ancilla=== '''<u>Stage 1</u>''' Cloner state preparation # Prepare a Bell state <math>|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)</math> '''<u>Stage 2</u>''' Cloner transformation</br> '''Input:''' <math>|\psi(\phi)\rangle_{A}|\Phi^{+}\rangle_{BM}</math></br> '''Output:''' <math>U_{pca}|\psi(\phi)\rangle_{A}|\Phi^{+}\rangle_{BM}</math></br> # Perform the unitary transformation described as follows:</br> <math>U_{pca}|0\rangle|0\rangle|0\rangle = |0\rangle|0\rangle|0\rangle</math></br> <math>U_{pca}|1\rangle|0\rangle|0\rangle = (cos\eta|1\rangle|0\rangle + sin\eta|0\rangle|1\rangle)|0\rangle</math></br> <math>U_{pca}|0\rangle|1\rangle|1\rangle = (cos\eta|0\rangle|1\rangle + sin\eta|1\rangle|0\rangle)|1\rangle</math></br> <math>U_{pca}|1\rangle|1\rangle|1\rangle = |1\rangle|1\rangle|1\rangle</math></br></br> '''<u>Stage 3</u>''' Discarding ancillary state # Discard the extra state. mathematically, trace out the ancilla
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information