Editing
BB84 Quantum Key Distribution
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The protocol implements <math>(n,\epsilon_{\rm corr},\epsilon_{\rm sec},\ell)</math>-QKD, which means that it generates an <math>\epsilon_{\rm corr}</math>-correct, <math>\epsilon_{\rm sec}</math>-secret key of length <math>\ell</math> in <math>n</math> rounds. The security parameters of this protocol are given by <math>\epsilon_{\rm corr}=\epsilon_{\rm EC},\ \epsilon_{\rm sec}= \epsilon_{\rm PA}+\epsilon_{\rm PE},</math> and the amount of key <math>\ell</math> that is generated is given by</br> <math> \begin{align} \ell \geq & (1-\gamma)^2n (1-h(Q_X+\nu) -h(Q_Z)) \\ &-\sqrt{(1-\gamma)^2n}\big(4\log(2\sqrt{2}+1)(\sqrt{\log\frac{2}{\epsilon_{\rm PE}^2}}+ \sqrt{\log \frac{8}{{\epsilon'}_{\rm EC}^2}})) \\& -\log(\frac{8}{{\epsilon'}_{\rm EC}^2}+\frac{2}{2-\epsilon'_{\rm EC}})-\log (\frac{1}{\epsilon_{\rm EC}})- 2\log(\frac{1}{2\epsilon_{\rm PA}}) \end{align} </math> </br>where <math>\nu = \sqrt{ \frac{(1+\gamma^2n)((1-\gamma)^2+\gamma^2)}{(1-\gamma)^2\gamma^4n^2}\log(\frac{1}{\epsilon_{\rm PE}}})</math> and <math>h(\cdot)</math> is the [[binary entropy function]]. In the above equation for key length, the parameters <math>\epsilon_{\rm EC}</math> and <math>\epsilon'_{\rm EC}</math> are error probabilities of the classical error correction subroutine. At the end of the error correction step, if the protocol does not abort, then Alice and Bob share equal strings of bits with probability at least <math>1-\epsilon_{\rm EC}</math>. The parameter <math>\epsilon'_{\rm EC}</math> is related with the completeness of the error correction subroutine, namely that for an honest implementation, the error correction protocol aborts with probability at most <math>\epsilon'_{\rm EC}+\epsilon_{\rm EC}</math>. The parameter <math>\epsilon_{\rm PA}</math> is the error probability of the privacy amplification subroutine and <math>\epsilon_{\rm PE}</math> is the error probability of the parameter estimation subroutine used to estimate <math>Q_X</math> (see [[Quantum Key Distribution]] for the precise security definition).
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information