Editing
Probabilistic Cloning
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== The probabilistic cloning machine can only perform effectively for a special set of input states. It was shown that states chosen from a set <math>S = \{|\psi_1\rangle, |\psi_2\rangle, ..., |\psi_n\rangle,\}</math> can be probabilistic-ally cloned if and only if the <math>|\psi_i\rangle</math> are linearly independent. This protocol in general consists of three stages as follows: ===General case=== '''<u>Stage 1</u>''' Ancilla preparation # Prepare an orthonormal set of states such as <math>\{|A_k\rangle\}</math> where <math>\langle A_k|A_l\rangle = \delta_{kl}</math> for <math>k,l= 0,1,...,n</math>. These states act as ancillary states of the protocol. </br></br> '''<u>Stage 2</u>''' Unitary Evolution</br></br> '''Input:''' <math>|\psi_i\rangle</math>, <math>|0\rangle</math>, <math>|A\rangle</math></br> '''Output:''' <math>U|\psi_i\rangle|0\rangle|A\rangle</math> # Perform the unitary transformation of the following form:</br> <math>U|\psi_i\rangle|0\rangle|A\rangle = \sqrt{p_i}|\psi_i\rangle|\psi_i\rangle|A_0\rangle + \sum_{j=1}^{n} c_{ij}|\Phi^{j}_{AB}\rangle|A_j\rangle</math></br></br> '''<u>Stage 3</u>''' Measurements </br> '''Input:''' <math>\sqrt{p_i}|\psi_i\rangle|\psi_i\rangle|A_0\rangle + \sum_{j=1}^{n} c_{ij}|\Phi^{j}_{AB}\rangle|A_j\rangle</math></br> '''Output:''' <math>|\psi_i\rangle|\psi_i\rangle</math> with probability <math>p_i</math> # Measure the ancilla states on the basis <math>{|A_k\rangle}</math>. ##'''If''' The output of the measurement is the state <math>|A_0\rangle</math> ##'''Then''' the protocol is successful and the output is the desired clones. ##'''Else''' Abort ===Two qubit case=== '''General Informaton:''' The special case of the above probabilistic cloning machine is the following protocol for two nonorthogonal qubit states. The input states for this machine are presented in the following form:</br> <math>|\psi_{\pm}\rangle = cos\eta|0\rangle \pm sin\eta|1\rangle, \quad \eta \in [0,\pi/4]</math></br> where <math>|0\rangle</math> and <math>|1\rangle</math> are two orthogonal bases of a single qubit.</br></br> '''<u>Stage 1</u>''' Ancilla preparation</br> # Prepare two blank states $|0\rangle|0\rangle$. One of these states is the blank state that we will copy on it and the other one is the ancilla. </br></br> '''<u>Stage 2</u>''' Unitary Evolution</br></br> '''Input:''' <math>|\psi_{\pm}\rangle</math>, <math>|0\rangle|0\rangle</math></br> '''Output:''' <math>U|\psi_{\pm}\rangle_x|0\rangle_y|0\rangle_z</math></br> # Perform the unitary transformation expressed as:</br> <math>U|\psi_{\pm}\rangle_x|0\rangle_y|0\rangle_z = \sqrt{p}|\psi_{\pm}\rangle_x|\psi_{\pm}\rangle_y|0\rangle_z + \sqrt{1-p}|\Phi\rangle_{xy}|1\rangle_z</math></br> here we labelled the three qubits by x, y and z</br></br> '''<u>Stage 3</u>''' Measurements </br> '''Input:''' <math>\sqrt{p}|\psi_{\pm}\rangle_x|\psi_{\pm}\rangle_y|0\rangle_z + \sqrt{1-p}|\Phi\rangle_{xy}|1\rangle_z</math></br> '''Output:''' <math>|\psi_{\pm}\rangle_x|\psi_{\pm}\rangle_y</math> with probabiliy p # Measure qubit z in the standard basis (<math>|0\rangle</math> and <math>|1\rangle</math> basis). ##'''If''' the output of the measurement is <math>|0\rangle</math> ##'''Then''' the protocol is successful and the final state of the machine are <math>|\psi_{\pm}\rangle_x|\psi_{\pm}\rangle_y</math> ##'''Else''' the protocol failed and the final state of the machine is <math>|\Phi\rangle_{xy}</math> ===The quantum circuit=== Finally, the quantum circuit which illustrates the above stages can be described to consist of following gates and parts which have been also shown in the figure in [[Probabilistic Cloning#Outline|Outline]] * Reverse Controlled <math>U_1</math> gate: A controlled unitary gates with the <math>x</math> (original) qubit as the control qubit and the <math>z</math> qubit as the operational qubit. The unitary gate <math>U_1</math> acts only if the control qubit is <math>|0\rangle</math>. The unitary <math>U_1</math> is:</br> <math>U_1 = sin\beta |0\rangle\langle 0| + cos\beta |1\rangle\langle 0| + cos\beta |1\rangle\langle 0| - sin\beta |1\rangle\langle 1|</math></br> where the <math>\beta = arcsin\Bigg(\sqrt{\frac{1+tan^4\eta}{2}}\Bigg)</math> * A normal [[CNOT]] gate: The control qubit is <math>y</math> and the operational qubit is <math>x</math> (The flip occurs if the control qubit is <math>|1\rangle</math>) * Reverse Controlled $U_2$ gate: A controlled unitary gates with the <math>x</math> (original) qubit as the control qubit and the <math>y</math> qubit as the operational qubit. The unitary gate <math>U_2</math> acts only if the control qubit is <math>|0\rangle</math>. The unitary <math>U_2</math> is:</br> <math>U_2 = sin\delta |0\rangle\langle 0| + cos\delta |1\rangle\langle 0| + cos\delta |1\rangle\langle 0| - sin\delta |1\rangle\langle 1|</math></br> where the <math>\delta = arcsin[(\sqrt{\frac{2}{1+tan^4\eta}} + \sqrt{\frac{2}{1+tan^{-4}\eta}})/2]</math> * [[Hadamard gate]]: A Hadamard gate on qubit <math>y</math> * Measurement part: Measuring qubit <math>z</math> in the standard basis.
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information