Editing
Device-Independent Oblivious Transfer
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Notation== <!-- Connects the non-mathematical outline with further sections. --> * <math>S</math>: The sender * <math>R</math>: The receiver * <math>l</math>: Length of the output strings * <math>s_0, s_1</math>: The strings output by the sender * <math>c</math>: A bit denoting the receiver's choice * For any bit <math>r</math>, ['''Computational, Hadamard''']<math>_r = \begin{cases}\mbox{Computational, if } r = 0\\ \mbox{Hadamard, if } r = 1\end{cases}</math> * <math>\sigma_X = \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} </math> * <math>\sigma_Z = \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix} </math> * For bits <math>v^{\alpha},v^{\beta}: |\phi^{(v^{\alpha},v^{\beta})}\rangle = (\sigma_Z^{v^{\alpha}}\sigma_X^{v^{\beta}} \otimes I) \frac{|00\rangle+|11\rangle}{\sqrt{2}}</math> * An ENTCF family consists of two families of function pairs: <math>F</math> and <math>G</math>. A function pair <math>(f_{k,0},f_{k,1})</math>is indexed by a public key <math>k</math>. If <math>(f_{k,0},f_{k,1}) \in F</math>, then it is a ''claw-free pair''; and if <math>(f_{k,0},f_{k,1}) \in G</math>, then it is called an ''injective pair''. ENTCF families satisfy the following properties: *# For a fixed <math>k \in K_F, f_{k,0}</math> and <math>f_{k,1}</math> are bijections with the same image; for every image <math>y</math>, there exists a unique pair <math>(x_0,x_1)</math>, called a ''claw'', such that <math>f_{k,0}(x_0) = f_{k,1}(x_1) = y</math> *# Given a ''key'' <math>k \in K_F</math>, for a claw-free pair, it is quantum-computationally intractable (without access to ''trapdoor'' information) to compute both a <math>x_i</math> and a single generalized bit of <math>x_0 \oplus x_1</math>, where <math>(x_0,x_1)</math> forms a valid claw. This is known as the ''adaptive hardcore bit'' property. *# For a fixed <math>k \in K_G, f_{k,0}</math> and <math>f_{k_1}</math> are injunctive functions with disjoint images. *# Given a key <math>k \in K_F \cup K_G</math>, it is quantum-computationally hard (without access to ''trapdoor'' information) to determine whether <math>k</math> is a key for a claw-free or an injective pair. This property is known as ''injective invariance''. *# For every <math>k \in K_F \cup K_G</math>, there exists a trapdoor <math>t_k</math> which can be sampled together with <math>k</math> and with which 2 and 4 are computationally easy. <!-- ==Knowledge Graph== --> <!-- Add this part if the protocol is already in the graph --> <!-- {{graph}} -->
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information