Editing
Authentication of Quantum Messages
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== *Any scheme, which authenticates quantum messages must also encrypt them [[Authentication of Quantum Messages#References|(1)]]. This is inherently different to the classical scenario, where encryption and authentication are two independent procedures. *'''Definition: Quantum Authentication Scheme (QAS)''' <br/>A quantum authentication scheme (QAS) consists of a suppliant <math>\mathcal{S}</math>, an authenticator <math>\mathcal{A}</math> and a set of classical private keys <math>K</math>. <math>\mathcal{S}</math> and <math>\mathcal{A}</math> are each polynomial time quantum algorithms. The following is fullfilled: # <math>\mathcal{S}</math> takes as input a <math>m</math>-qubit message system <math>M</math> and a key <math>k\in K</math> and outputs a transmitted system <math>T</math> of <math>m + t</math> qubits. # <math>\mathcal{A}</math> takes as input the (possibly altered) transmitted system <math>T^\prime</math> and a classical key <math>k\in K</math> and outputs two systems: a <math>m</math>-qubit message state <math>M</math>, and a single qubit <math>V</math> which indicates acceptance or rejection. The classical basis states of <math>V</math> are called <math>|\mathrm{ACC}\rangle, |\mathrm{REJ}\rangle</math> by convention. </br>For any fixed key <math>k</math>, we denote the corresponding super-operators by <math>S_k</math> and <math>A_k</math>. *'''Definition: Security of a QAS''' <br/>For non-interactive protocols, a QAS is secure with error <math>\epsilon</math> if it is complete for all states <math>|\psi\rangle</math> and has a soundness error <math>\epsilon</math> for all states <math>|\psi\rangle</math>. These two conditions are met if: #''Completeness:'' A QAS is complete for a specific quantum state <math>|\psi\rangle</math> if <math>\forall k\in K: A_k(S_k(|\psi\rangle \langle\psi|)=|\psi\rangle \langle\psi| \otimes |\mathrm{ACC}\rangle \langle \mathrm{ACC}|.</math> <br/>This means if no adversary has acted on the encoded quantum message <math>|\psi\rangle</math>, the quantum information received by <math>\mathcal{A}</math> is the same initially sent by <math>\mathcal{S}</math> and the single qubit <math>V</math> is in state <math>|\mathrm{ACC}\rangle \langle \mathrm{ACC}|</math>. To this end, we assume that the channel between <math>\mathcal{S}</math> and <math>\mathcal{A}</math> is noiseless if no adversary intervention appeared. #''Soundness:'' For all super-operators <math>\mathcal{O}</math>, let <math>\rho_\text{auth}</math> be the state output by <math>\mathcal{A}</math> when the adversary’s intervention is characterized by <math>\mathcal{O}</math>, that is: <math display=block>\rho_\text{auth}=\mathbf{E}_k\left[ \mathcal{A}_k\left( \mathcal{O}(\mathcal{S}(|\psi\rangle \langle\psi |)) \right) \right] = \frac{1}{|K|}\sum_k \mathcal{A}_k\left( \mathcal{O}(\mathcal{S}_k(|\psi\rangle \langle\psi |)) \right),</math> <br/> where again we consider a specific input state <math>|\psi\rangle</math>. Here, <math>\mathbf{E}_k</math> means the expectation when <math>k</math> is chosen uniformly at random from <math>K.</math> The QAS then has a soundness error <math>\epsilon</math> for <math>|\psi\rangle</math> if <math display=block>\mathrm{Tr}\left( P_1^{|\psi\rangle}\rho_\text{auth} \right)\geq 1-\epsilon,</math> </br>where <math>P_1^{|\psi\rangle}</math> is the projector <math display=block>P_1^{|\psi\rangle} = |\psi\rangle \langle\psi | \otimes I_V + I_M \otimes |\mathrm{REJ}\rangle \langle \mathrm{REJ}| - |\psi\rangle \langle \psi| \otimes |\mathrm{REJ}\rangle \langle \mathrm{REJ}|.</math>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information