Editing
Arbitrated Quantum Digital Signature
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Notation== * <math>n</math>: Total number of qubits of message. * <math>f</math>: public function to obtain public key from user's email-id * <math>k_{pub}</math>: Seller's public key, where <math>k_{pub} \in \{0,1\}^n</math>. * <math>k_{pri}</math>: Seller's private, where <math>k_{pri} \in \{0,1\}^n</math>. * <math>k_r</math>: Random OTP number selected by PKG to denote each of Seller's signatures, where <math>k_{r} \in \{0,1\}^n</math>. * <math>VC(x,y)</math>: function VC performs one time pads 'y' using quantum pad key 'x' via [[Arbitrated Quantum Digital Signature#References|Quantum Vernam Cipher (1), (2)]]. * <math>k_{at}</math>: Shared key between the Seller and PKG where <math>k_{at} \in \{0,1\}^n</math>. * <math>E_{k_{at}}</math>: Quantum Vernam cipher encrypted state which uses <math>k_{at}</math>. * <math>G</math>: PKG's master key which is a one way function where <math>\{0,1\}^n \xrightarrow{}\{0,1\}^n</math> . * <math>F</math>: Public quantum one way function selected by Seller to generate quantum digest. * <math>m</math>: Message sent by Seller to the Buyer, where <math>m \in \{0,1\}^n</math>. * <math>s</math>: Random string of uniform distribution selected by the Seller, where <math>s \in \{0,1\}^n</math>. * <math>t</math>: Random string of uniform distribution selected by the Seller, where <math>t \in \{0,1\}^n</math>. *<math>l</math>: qubit address * <math>|\phi\rangle_{a_l,b_l}</math>: Quantum state which is defined by <math>|\phi\rangle_{a_l,b_l} := H^{a_l}U_{\frac{\pi}{4}}H^{b_l}|0\rangle</math> * <math>|\phi\rangle_{a_l,b_l,c_l}</math>: Quantum state which is defined by <math>|\phi\rangle_{a_l,b_l,c_l} := Y^{c_l}|\phi\rangle_{a_l,b_l}</math> * <math>|S\rangle_{k_{pri},m}</math>: Signature quantum state for message <math>m</math> which is the quantum state <math>|S\rangle_{k_{pri},m} = \bigotimes^{n}_{l=1} H^{k_{pub_l}\oplus k_{pri_l}} |\phi\rangle_{s_l,t_l\oplus m_l, m_l}</math> * <math>|P\rangle</math>: Private key quantum state where <math>|P\rangle \in \{|+\rangle, |-\rangle, |1\rangle, |0\rangle\}^n</math> and it is the quantum state: <math>|P\rangle := H^{k_{pri}}|\phi\rangle_{s, t\oplus m}</math> * <math>P</math>: Classical 2n-bit for <math>n</math>-qubit <math>|P\rangle</math> where <math>|+\rangle</math> is encoded to 10, <math>|-\rangle</math> to 11, <math>|1\rangle</math> to 00 and <math>|0\rangle</math> is encoded to 01. * <math>B_l</math>: This is the set of the basis of each <math>l^th</math> qubit in <math>|P\rangle</math>. <math> B_l \in \{+,\times \}</math> *<math>B_l(|P_l\rangle)</math>: Measurement of <math>l^{th}</math> qubit in basis <math>B_l</math> *<math>b_l</math>: measurement result of <math>l^{th}</math> qubit in the concerned quantum state * <math>|F\rangle</math>: Quantum digital digest received by PKG. * <math>|F\rangle'</math>: Quantum digital digest generated by Buyer. * <math>u</math>: The most number of Buyer in this scheme. * <math>w</math>: Safety parameter threshold for acceptance. * <math>w_0</math>: Security threshold decided in advance. * <math>w'</math>: Number of times SWAP test is performed. * <math>|V\rangle_{m, k_{pub},S}</math>: A quantum state, where <math>|V\rangle_{m, k_{pub},S} := Y^m H^{k_{pub}}|S\rangle_{k_{pri}, m}</math> This state is also expressed as <math>\beta|\phi\rangle_{k_{pri}\oplus s, t\oplus m}</math> where <math>\beta \in \{1, -1, \iota, -\iota\}</math> * <math>Q</math>: Classical bit string denoted as <math>Q \in \{00, 01, 10, 11\}^n</math>. It is proven that <math>P=Q</math>. *<math>g(Q)</math>: g is a classical function which when takes classical 2n bit string Q, gives seller's random string t as output. This function can be calculated. * <math>\delta</math>: <math>\langle F|F\rangle'</math>, where <math>\delta \in [0,1)</math>.
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information