Editing
Blind Delegation of Quantum Digital Signature
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== Every pair of parties share different quantum key matrices <math>K_{AB}</math>, <math>K_{AC}</math> and <math>K_{BC}</math> respectively using Simon et al.’s QKD algorithm. The key matrices <math>K_{AB}</math>, <math>K_{AC}</math> and <math>K_{BC}</math> are either Fibonacci or Lucas or Fibonacci-Lucas matrices. The protocol consists of 5 stages: # Setup ## The owner who transforms the message into an <math>n</math>-square matrix and blinds the matrix. ## The signer who signs the blind message. ## The verifier who checks if a signature matches the message. # Key Distribution ## Every pair uses Simon et al.'s QKD protocol to establish their pairwise key matrices <math>\{K_{AB}^1, K_{AB}^2,..., K_{AB}^\alpha\} = K_{AB}</math> between Owner and Signer; <math>\{K_{BC}^1, K_{BC}^2,..., K_{BC}^\alpha\} = K_{BC}</math> between Signer and Verifier; <math>\{K_{AC}^1, K_{AC}^2,..., K_{AC}^\alpha\} = K_{AC}</math> between Owner and Verifier. # Message Blinding ## The Owner transforms the message into matrices <math>(M_1, M_2,..., M_\alpha) = M</math> where <math>M_k = (m_{tj})_{n\times n}</math>, <math>k \in \{1,2,..., \alpha\}, t,j \in \{1,2,..., n\}</math>. ## The Owner blinds the message matrix using <math>K_{AC}</math> <br/> <math> M'_k = M_k \times K^k_{AC} k \in \{1,2,...,\alpha\} </math> ## The Owner now encrypts the message matrix using <math>K_{AB}</math> <br/> <math> M''_k = M'_k \times K^k_{AB} k \in \{1,2,...,\alpha\} </math> ## Finally, the Owner sends <math>(M''_k, det(M'_k))</math> to the Signer, and <math>det(M_k)</math> to the Verifier. # Signing ## The Signer decrypts <math>M''_k</math> with the key <math>K^k_{AB}</math> to obtain <math>M'_k</math>. <br/> <math>M'_k = M''_k \times (K_{AB}^k)^{-1} </math> <br/> where <math>(K_{AB}^k)^{-1}</math> denotes the inverse matrix of <math>K_{AB}^k</math>. ## If the determinant of <math>M'_k</math> recovered by the Signer is not equal to the value of the determinant obtained from the Owner, the Signer aborts the protocol. Otherwise, he performs the next step. ## He signs the blind message <math>M'_k</math> using <math>K_{BC}^k</math>. The signature is <br/> <math> S^k = M'_k \times K_{BC}^k </math> ## He then sends the signature <math>S = \{S^1, S^2,..., S^\alpha\}</math> to the Verifier. # Verification ## The Verifier decrypts the signature <math>S</math> using <math>K_{BC}^k</math> to obtain the blind message <math>M'</math>. <br/> <math> M'_k = S^k \times (K_{BC}^k)^{-1} </math> ## The Verifier then un-blinds the message <math>M'</math> using <math>K_{AC}^k</math> to obtain the message <math>M</math>. <br/> <math> M_k = M'_k \times (K_{AC}^k)^{-1} </math> ## He then checks if the determinant of <math>M</math> obtained from the signature is the same as <math>det(M)</math> obtained from the Owner. If it holds, he verifies the following equations: <br/> <math> det(S^k) = det(M'_kK_{BC}^k) = det(M'_k) \times det(T^n_p) </math> <br/> <math> = (-1)^ndet(M'_k) = (-1)^{2n}det(M_k) </math>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information