Editing
(Symmetric) Private Information Retrieval
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Description== <!-- Description: A lucid definition of functionality in discussion.--> Private information retrieval (PIR) is a classical cryptographic functionality that allows one party (user) to privately retrieve an element from a classical database owned by another party (server), i.e., without revealing to the other party which element is being retrieved (user privacy).<br></br> Symmetric private information (SPIR) retrieval is PIR with the additional requirement that throughout and after the protocol, the user remains oblivious to other database elements, i.e., apart from the queried one (data privacy).<br></br> In the quantum setting, the use of quantum systems is allowed to achieve (S)PIR: this may imply the use of a quantum channel between the user and the server, and the capability to prepare quantum states, apply quantum gates or measure quantum systems by one or both parties. (S)PIR in this setting is known as quantum (symmetric) private information retrieval (Q(S)PIR).<br></br> In the classical or quantum setting, (Q)SPIR and one-out-of-n (quantum) [[Oblivious Transfer|oblivious transfer]] (OT) are similar cryptographic tasks; the only minor difference between those functionalities is that protocols for OT are two-party protocols, while attempts at achieving SPIR have considered both two-party and multi-party protocols where the user communicates with several servers, each holding a copy of the database.<br></br> Apart from using quantum techniques to enhance the classical (S)PIR functionality (i.e., design better protocols than their classical counterparts in terms of different metrics like e.g., communication complexity), there has also been a recent interest in a ‘fully’ quantum (S)PIR where a user wants to query a quantum database (items are quantum states)[[#References|[1]]].<br></br> '''Tags:''' [[:Category:Two Party Protocols|Two Party Protocol]],[[Category:Two Party Protocols]] [[:Category:Specific Task|Specific Task]], [[Category:Specific Task]] [[:Category: Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]].[[Category:Quantum Enhanced Classical Functionality]] <!-- Tags Any related page or list of protocols is connected by this section-->
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information